Name Solutions

September 22, 2010

ECE 311 Exam 1 Fall 2010

Closed Text and Notes

- 1) Be sure you have 12 pages.
- 2) Write only on the question sheets. Show all your work. If you need more room for a particular problem, use the reverse side of the same page.
- 3) no calculators allowed
- 4) Write neatly, if your writing is illegible then print.
- 5) The last 2 pages contain equations that may be of use to you.
- 6) You can leave π and $\epsilon_{\scriptscriptstyle O}$ in your answers.
- 7) This exam is worth 100 points.

(6 pts) 1. Express the point $(3, \frac{\pi}{4}, 3)$ in Cartesian and spherical coordinates.

Cartesian:

$$X = \rho \cos \phi = 3 \cos \frac{\pi}{4} = 3 \frac{1}{12} = \frac{3 \sqrt{12}}{2}$$

 $Y = \rho \sin \phi = 3 \cos \frac{\pi}{4} = 3 \frac{1}{12} = \frac{3 \sqrt{12}}{2}$
 $(3 \sqrt{12}) 3 \sqrt{12} 3 \sqrt{12}$

spherical:

$$V = \sqrt{\chi^2 + \chi^2 + z^2} = \sqrt{\rho^2 + z^2} = \sqrt{(3)^2 + (3)^2} = \sqrt{18} = 3\sqrt{2}$$

 $\cos \theta = \frac{2}{r} = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}} \implies \theta = \frac{\pi}{4}$
(3) $\sqrt{2}$, $\frac{\pi}{4}$, $\frac{\pi}{4}$

(5 pts) 2. In cylindrical coordinates, a unit normal vector to the plane $\dot{\phi} = 45^{\circ}$ is

- A) **a**_o
- B) a_{\phi}
- C) \mathbf{a}_{z}
- D) none of the above

(5 pts) 3. The intersection of the surfaces $\rho = 1$ m and $z = \frac{\pi}{3}$ is

- a) a sphere
- b) a circle
- c) a straight line
- d) a cone
- e) c and d
- f) a and b

(8 pts) 4. In the following figure the dashed lines represent closed spherical surfaces that completely surround the point charges shown, Q_A , Q_B , Q_C , and Q_D .

Determine values for these four point charges that would make,

$$\Phi \mathbf{D} \cdot \mathbf{dS} \text{ over surface } 1 = 2C \Rightarrow Q_B + Q_C = 2C \Rightarrow Q_C = 2C - Q_B = 3C$$

$$\Phi \mathbf{D} \cdot \mathbf{dS} \text{ over surface } 2 = 0 \Rightarrow Q_A + Q_B = 0 \Rightarrow Q_B = -Q_A = -1C$$

$$\Phi \mathbf{D} \cdot \mathbf{dS} \text{ over surface } 3 = -1C \Rightarrow Q_A = -1C$$

$$\Phi \mathbf{D} \cdot \mathbf{dS} \text{ over surface } 4 = 1C \Rightarrow Q_A = 1C$$

$$Q_A = 1C \Rightarrow Q_B = -1C$$

$$Q_C = 3C \Rightarrow Q_D = -1C$$

(15 pts) 5. A 1C charge is placed at (1m, 0, 0) and a 1C charge is placed at (-1m, 0, 0). Determine the electric field intensity for the (0, y, 0), the y-axis

$$\vec{E}_{2} = \vec{E}_{3} = \vec{E}_{3}$$

(10 pts) 6. A $Q_1 = \pi \epsilon_O$ C charge is placed at (1m, 0, 0) and a $Q_2 = \pi \epsilon_O$ C charge is placed at (-1m, 0, 0). With $V(\infty) = 0$,

(5 pts) A) what is the voltage at (0, 1m, 0)

$$Q_{3} = 176_{0}C$$
 $Q_{1} = 176_{0}C$
 $V(0,1m,0) = \frac{1}{4176_{0}} \frac{176_{0}}{1711} + \frac{1}{4176_{0}} \frac{176_{0}}{1711}$
 $= \frac{1}{2} \frac{1}{127} V = \frac{1}{4} V$

(5 pts) B) what is the voltage at (0,0,0)

(12 pts) 7. The z = 1 m plane contains a sheet charge density of $-2 \frac{C}{m^2}$ and the z = -1 m plane a sheet charge density of $-2 \frac{C}{m^2}$. Determine the Electric flux density everywhere.

To determine flux density caused by the two planes, we can add the electric flux density caused by each plane as shown, D= -2 = 92 72-1 = 2 = az

(10 pts) 8. Shown are infinite planes of equipotential that are parallel to the z-axis. The ticks on the x- and y-axis represent 1 m steps. The potential step between equipotential surfaces is 10V as shown. Determine the electric field intensity.

(2 pts) 9. A) What are the units of the electric field intensity?

(2 pts) 9 B) What are the units of the electric flux density?

$$\frac{C}{m^2}$$

(10 pts) 10. How much energy is stored in an arrangement of two point charges, one of charge $Q_1 = 4\pi\epsilon_0 C$ at location (-1m, 0, 0) and one of charge $Q_2 = 1 C$ at (-2m, 0, 0)?

$$Q_1 = 4\pi\epsilon_0 C$$
 at location (-1m, 0, 0) and one of charge $Q_2 = 1 C$ at (-2m, 0, 0)?
Positioning the $Q_2 = 1 C$ charge first
requires no work. The work to now position
the $Q_1 = 4\pi\epsilon_0 C$ charge is,
 $W = Q_1 V_{12} = (4\pi\epsilon_0) \frac{1}{4\pi\epsilon_0} \frac{1}{1} = 1 J$

- (5 pts) 11. Which one of the following statements best describes the equipotential surfaces surrounding a point charge?
 - A) The equipotential surfaces are planes extending radialy outward from the charge.
 - B) The equipotential surfaces are curved surfaces surrounding the charge, but only one passes through the charge.
 - C) The equipotential surfaces are concentric cubes with the charge at the center.
 - D) The equipotential surfaces are concentric spheres with the charge at the center.
 - E) The equipotential surfaces are concentric cylinders with the charge on the axis at the center.

(10 pts) 12. If the electric field intensity is given by

$$\mathbf{E} = \frac{1}{\rho} \hat{\mathbf{a}}_{\phi} \frac{V}{m} \text{ for } 0 < \phi \le \frac{\pi}{2}$$

How much work is done moving a $\frac{24}{\pi}$ C charge from $(10, \frac{\pi}{3}, 3)$ to $(2, \frac{\pi}{4}, 1)$?

$$W = -\int Q \hat{E} \cdot \hat{J}$$

$$W = -\left(\frac{24}{37}C\right) \int \left(\frac{1}{6} \hat{a}_{0} \frac{V}{m}\right) \cdot \left(d_{0} \hat{a}_{0} + p d_{0} \hat{a}_{1} + d_{2} \hat{a}_{2}\right)$$

$$= -\left(\frac{24}{37}C\right) \int \frac{\pi}{4} d_{0} J$$

$$= -\left(\frac{24}{17}C\right) \int \frac{\pi}{4} d_{0} J$$

$$= -\frac{24}{17} \int \frac{\pi}{4} J = -\frac{24}{17} \left(\frac{\pi}{4} - \frac{\pi}{3}\right) J$$

$$= -\frac{24}{17} \int \frac{\pi}{4} J = -\frac{24}{12} \left(\frac{3}{12} - \frac{4}{12}\right) J$$

$$= -\frac{24}{17} \left(\frac{1}{4} - \frac{1}{3}\right) J = -\frac{24}{12} \left(\frac{3}{12} - \frac{4}{12}\right) J$$